On the Circuit Complexity of Isomorphic Galois Field Transformations

نویسندگان

  • Charanjit S. Jutla
  • Vijay Kumar
  • Atri Rudra
چکیده

We study the circuit complexity of linear transformations between Galois fields GF(2) and their isomorphic composite fields GF((2)). For such a transformation, we show a lower bound of Ω(mn) on the number of gates required in any circuit consisting of constant-fan-in XOR gates, except for a class of transformations between representations of such fields which are nicely characterized. The exceptions show that the polynomials representing the fields must be of a regular form, which may be of independent interest. We characterize a family of transformations which can be implemented as crosswires (permutations), without using any gates, which is very useful in designing hardware implementations – and through bit-slicing, software implementations – of computations based on Galois Field arithmetic. We also show that our lower bound is tight, by demonstrating a class of transformations which only require a linear number of gates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Circuit Complexity of Composite Galois Field Transformations

We study the circuit complexity of linear transformations between Galois fields GF(2mn) and their isomorphic composite fields GF((2m)n). For such a transformation, we show a lower bound of Ω(mn) on the number of gates required in any circuit consisting of constant-fan-in XOR gates, except for a class of transformations between representations of such fields which are nicely characterized. The e...

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

On Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric

Let  be an n-dimensional Riemannian manifold, and  be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation  induces an infinitesimal homothetic transformation on .  Furthermore,  the correspondence   gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on  onto the Lie algebra of infinitesimal ...

متن کامل

An improved and efficient stenographic scheme based on matrix embedding using BCH syndrome coding.

This paper presents a new stenographic scheme based on matrix embedding using BCH syndrome coding. The proposed method embeds massage into cover by changing some coefficients of cover. In this paper defining a number :::as char:::acteristic of the syndrome, which is invariant with respect to the cyclic shift, we  propose a new embedding algorithm base on BCH  syndrome coding, without finding ro...

متن کامل

) Multiplier Using Combinational Gates

This paper proposes the design and implementation of GF (2) multiplier using composite field arithmetic. We have introduced an irreducible polynomial X+X+ξ. This irreducible polynomial is required for transforming Galois field of GF (2) to composite field of GF (((2))). Our estimation of the value of ξ and subsequently the composite field arithmetic hence forth derived achieved high speed GF (2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002